U.S. NRC Blog

Transparent, Participate, and Collaborate

REFRESH: Do Not Fear Your Smoke Detector – It Could Save Your Life

Maureen Conley
Public Affairs Officer

refresh leafWe sometimes get calls from people worried about radiation from smoke detectors in their homes. There are many reasons why the public need not fear these products.

Ionization chamber smoke detectors contain very small amounts of nuclear material. They might use americium-241, radium-226 or nickel-63. These products detect fires early and can save lives. [We explained how smoke detectors work in greater detail in an earlier blog post.]

The Atomic Energy Commission granted the first license to distribute smoke detectors in 1963. These early models were used mainly in factories, public buildings and warehouses. In 1969, the AEC allowed homeowners to use smoke detectors without the need for a license. Their use in homes expanded in the early 1970s. The NRC took over from the AEC in 1975.

Makers and distributors of smoke detectors must get a license from the NRC. They must show that the smoke detector meets our health, safety and labeling requirements.

smokedetectornewMost smoke detectors sold today use 1 microcurie or less of Am-241. They are very safe. A 2001 study found people living in a home with two of these units receive less than 0.002 millirems of radiation dose each year. That is about the dose from space and the earth that an East Coast resident receives in 12 hours. Denver residents receive that dose in about three hours. These doses are part of what is known as “background radiation.”

The radioactive source in the smoke detector is between two layers of metal and sealed inside the ionization chamber. The seal can only be broken by the deliberate use of force, which obviously we discourage. Still, even then it would result in only a small radiation dose. The foil does not break down over time. In a fire, the source would release less than 0.1 percent of its radioactivity. It’s important to understand that none of the sources used in smoke detectors can make anything else radioactive.

What about disposing of smoke detectors? A 1979 analysis looked at the annual dose from normal use and disposal of Am-241 smoke detectors. The study used actual data and assumptions that would overstate the risk. It allowed the NRC to conclude that 10 million unwanted smoke detectors each year can be safely put in the trash.

The 2001 study looked at doses from misuse. It found that a teacher who removed an americium source from a smoke detector and stored it in the classroom could receive 0.009 millirems per year. If the teacher used the source in classroom demonstrations, handling it for 10 hours each year would give less than a 0.001 mrem dose. A person who swallowed the source would receive a 600 mrem dose while it was passing through the body.

I hope this information allays concerns. Unless you remove and swallow the source, your dose from a smoke detector could not be distinguished from what you get throughout your day. And that smoke detector could save your life.

 REFRESH is an occasional series during which we revisit previous blog posts. This originally ran on June 11, 2013. We are rerunning now in honor of Fire Prevention Week. According to the National Fire Protection Association, the week was established to commemorate the Great Chicago Fire, which killed more than 250 people, left 100,000 homeless, destroyed more than 17,400 structures and burned more than 2,000 acres. This year’s theme is Smoke Alarms Save Lives: Test Yours Every Month.

 

Throwback Thursday — The First Regulatory Information Conference

Crowd ImageThe NRC’s first Regulatory Information Conference was held at the Mayflower Hotel in Washington D.C. on April 18-20, 1989. It began as a small conference (some 500 attendees at the first one) on nuclear safety regulation. Today, it is a large public meeting with more than 3,000 attendees from some two dozen nations. In 2015, it will be held at the Bethesda North Marriot Hotel and Conference Center in North Bethesda, Md., from March 10 through 12th. Registration will open early in 2015.

Now for our history question: Which Executive Director for Operations made introductory comments at that first RIC?

NRC Joins Five Other Agencies in Addressing Uranium Contamination on the Navajo Nation

Dominick Orlando
Senior Project Manager

 

Navajo coverLast year, after five years of work to reduce risks from uranium contamination on territory that is part of the Navajo Nation, the NRC, along with four other federal agencies, reported on our progress to Congress. This week, the five federal agencies issued a plan that spells out how we’ll continue coordinating that work for the next five years.

 The agencies’ second Five-Year Plan builds on lessons learned from the first five years. It reflects new information and defines the next steps to address the most significant risks to human health and the environment. The new plan commits us to working together to reduce these risks and find long-term solutions.

 In October 2007, Congress asked the agencies to develop a plan to address the contamination on Navajo land, which dates back to the 1940s when uranium was in high demand. The Navajo Nation had large uranium deposits but regulations were not what they are today and mining companies left extensive contamination requiring cleanup. Legislation and new regulatory provisions were put in place to address these issues.

 The 2013 report capped off a five-year program the agencies conducted, in consultation with Navajo and Hopi tribal officials, to address uranium contamination on their land. Part of this work was government-to-government consultations with the Navajo.

 The program was a joint effort among EPA, the NRC, the Department of Energy, the Bureau of Indian Affairs, the Centers for Disease Control and the Indian Health Service. It focused on collecting data, identifying the most imminent risks, and addressing contaminated structures, water supplies, mills, dumps, and mines with the highest levels of radiation. We also learned more about the scope of the problem and the work that still remains.

 The NRC’s role is to oversee the work done by DOE, which is the long-term custodian for three sites storing uranium mill tailings—a sandy waste left over from processing uranium—and one former processing site. We do that by reviewing and, if acceptable, concurring on DOE’s plans to clean up contaminated groundwater, visiting the sites to evaluate how DOE is performing long-term care activities, and reviewing DOE’s performance and environmental reports.

 We will work closely with EPA, DOE, the New Mexico Environment Department, and the Navajo during the cleanup of the Northeast Church Rock site—which EPA and Navajo officials identified as the highest priority site for cleanup. The NRC will also be part of outreach activities detailed in the plan, including participating in stakeholder workshops and contributing, as appropriate, to educational and public information activities.

 Five years from now, we look forward to being able to say that with close coordination among all the parties, we have continued to make major progress in addressing concerns about uranium contamination.

Checking the Links in the Nuclear Supply Chain

Mary Anderson
Vendor Inspector
Office of New Reactors

 

The NRC’s focus on nuclear power plant safety doesn’t stop at the plants. Since the 1970s (at that time under the Atomic Energy Commission), NRC inspectors have kept a watch on the companies that provide safety-related components and services to U.S. plants.

 magnifyingglassThe agency believes plants and vendors have effective quality assurance programs in place to proactively prevent the use of counterfeit, fraudulent and suspect items. These programs include careful supplier selections, effective oversight of sub-suppliers, and the authority to challenge a part’s “pedigree” when necessary. 

The NRC oversees these quality activities by inspecting nuclear power plants and their vendors. Vendor inspection can include site visits to production facilities. We create and share information and guidance for the nuclear industry to improve detection of counterfeit and fraudulently marketed products. We also incorporate this information into our inspection programs. The NRC has yet to see any instance of these items in safety-related systems in U.S. plants, but constant vigilance by the licensees and the NRC is essential to make sure it stays that way.

 These days our Vendor Inspection Center of Expertise operates out of the Office of New Reactors to cover both operating reactors and those under construction. NRC staff experts inspect vendors, and observe when plants audit their suppliers, to determine if the plants are properly overseeing their supply chain. Importantly, the NRC also verifies that the plants and their vendors comply with our quality assurance criteria and our “Part 21” requirements for reporting defects and noncompliance, as well as applicable codes and standards.

 The center’s staff also inspect companies applying for design certificates, early site permits or combined licenses. We check on whether the applicants have effective quality assurance processes and procedures for activities related to their applications.

 Right now, we’re working on several vendor-related issues, including evaluating the industry’s process for safely upgrading commercial products that aren’t specifically made for nuclear applications to be used in some plant systems. Common items such as gaskets, nuts and bolts, and electrical relays could be acceptable for nuclear plant use, for example.

 We’re updating and simplifying Part 21, the NRC regulation that covers counterfeit, fraudulent and suspect items. We’re also confirming effective controls are in place to prevent such items from making their way into the U.S. safety-system supply chain. We’re clarifying the processes for evaluating and reporting defects, and the acceptance criteria for off-the-shelf commercial products. The Center is developing regulatory guides so plants and vendors better understand these processes.

 The NRC’s vendor workshop in Portland, Ore., gave us a forum to put this issue in the spotlight. Among a range of vendor topics, this year’s workshop included an industry perspective on counterfeit, fraudulent, and suspect items.

 The NRC has also been actively involved with our international partners to address the risk of counterfeit and fraudulent items. We’ve collaborated with the International Atomic Energy Agency and the Nuclear Energy Agency to share best practices and recommend options to strengthen inspection programs and increase information sharing.

REFRESH: In Nuclear Power Plants – Behavior Is Under Observation

Mark Resner
Access Authorization Program Coordinator

 

refresh leafThe NRC requires that all nuclear power plants follow strict access authorization regulations that are intended to make sure only trusted individuals have the OK to be in the most sensitive areas of the plant. These access authorization regulations require fingerprint checks, drug and alcohol screening, psychological testing and other hurdles when employees are first hired, and must be periodically updated if the individuals are to continue to have access to these areas.

But even once a worker has been granted so-called unescorted access, they are still subject to a “behavioral observation program.” In other words, the NRC requires that every plant have a program in which all employees and supervisors are trained in detecting problems such as drug or alcohol abuse or other impairments of employees.

As part of the program, all employees are required to report to their supervisors any suspicious behavior they see among their coworkers. Suspicious behavior could be a worker observed in an area of the plant where they don’t have authorization to be, or if a worker made threatening statements about harming people or plant equipment.

The NRC regulations even require workers to report on themselves or “self-disclose” if they, for whatever reason, believe they are no longer mentally and physically fit to safely perform their duties. An example of this is an employee undergoing marital problems that are causing them stress that interferes with their duties. Such an employee may be referred to an Employee Assistance Program or their assigned duties may be changed until the person is deemed fit for duty.

If a determination is made to deny the person unescorted access for any reason, their name and that fact is entered into an information sharing database that NRC requires all U.S. nuclear power plants to use. Should that person attempt to enter (or get a job at) another nuclear plant, the information about their access status would be available for review by the plant they were attempting to access.

Ultimately, a determination that an employee is not trustworthy or reliable – based on behavior observation or self reporting — has serious implications for that person maintaining their access authorization but such determinations are necessary to keep nuclear power plants operating safely in their communities.

REFRESH is an occasional series where we revisit previous blog posts. This one originally ran in May 2012.

Follow

Get every new post delivered to your Inbox.

Join 1,489 other followers

%d bloggers like this: