U.S. NRC Blog

Transparent, Participate, and Collaborate

Tag Archives: AEC

Moments in NRC History: Research and Test Reactors Series

Thomas Wellock

One of the earliest proposals to meet “the promise of the peaceful atom” was a small research reactor so simple and inexpensive that universities could buy one for scholars and students. That was the plan back in April 1948.

The Atomic Energy Commission (the NRC’s predecessor agency) touted research reactors as a peaceful counterpoint to nuclear weapons. The AEC thought research reactors could jump-start a civilian industry at home and cultivate allies abroad. And in large measure, it worked. As the nation’s first civilian owned reactors, they broke down military secrecy and demonstrated the atom’s peaceful potential for education, medicine, research, and industry.

Moments in NRC History_The first of a series of videos outlining this promise and the unique safety challenges of research reactors went live today on the NRC’s YouTube channel.

The video starts its journey with North Carolina State College’s first civilian-owned reactor — part of its new program in nuclear engineering. Then, two years later, Oak Ridge’ research reactor made a debut in Geneva, Switzerland, in 1955. It was an inexpensive “swimming pool” reactor unveiled at the world’s first international conference on the peaceful uses of nuclear energy. Over 60,000 people, including prime ministers, royalty, and presidents, lined up to peered down into the blue glow of the future.

As the video points out, dozens of universities and corporations followed with their own research reactors. They were small, safe, and used only a small amount of uranium fuel compared to nuclear power plants. For only a small investment, researchers could open up the secrets of the atom and produce isotopes critical to medicine and industrial uses. Ultimately, these research reactors led to the innovative idea of testing the age of ancient pottery

Worldwide more than 670 research reactors were built in 55 countries with 227 in the United States alone.

We hope you’ll take the time to watch the video. And look for the next one coming soon, focusing on key challenges in ensuring safety, preventing diversion of  fuel for weapons, and preserving the benefits of research reactors even as their numbers have declined.


Penn State University’s Breazeale Reactor Celebrates 60 Years

Thomas Wellock

pennstateLast month, Pennsylvania State University’s Breazeale Research Reactor celebrated its 60th anniversary as the nation’s oldest licensed reactor. The Breazeale reactor has been invaluable in research, training, and in establishing Penn State’s well-regarded nuclear engineering program. As part of the Atoms for Peace program, it trained foreign engineers as reactor operators and tested fuel integrity for reactors exported to other nations.

It is a historic marker of early reactor development.

In the early 1950s, universities raced to build research reactors. North Carolina State College jumped ahead when it contracted with the Atomic Energy Commission (AEC) to build a reactor that started up in 1953. By 1955, 14 schools had applied to the AEC for the license required of new reactors under the Atomic Energy Act of 1954.

Penn State had two important assets in this race: money and William Breazeale. Penn State’s board of trustees committed ample funds for construction and operation. To win AEC approval, Penn State followed NC State’s successful strategy of raiding the AEC for faculty talent and a reactor design.

An electrical engineer by training, Breazeale had worked for several years at Oak Ridge National Laboratory supporting the design of thorium and uranium-fueled reactors. His signal accomplishment was in leading the design team for the Bulk Shielding Reactor, the prototype of the “swimming pool” research reactors built at Penn State and facilities around the world. Penn State hired Breazeale to serve as its first-ever professor of nuclear engineering.

The swimming pool reactor was safe, inexpensive, and startlingly simple. Engineers just placed the reactor fuel at the bottom of a tank 30 feet deep so that the water served as a source of cooling and radiation shielding. Faculty and students could stand on a platform directly over the reactor to operate and view it.

Nevertheless, the AEC’s Advisory Committee for Reactor Safeguards (ACRS) made the path to licensing approval so challenging that a frustrated Breazeale once suggested the Committee did not “view the [reactor] hazard problem in its proper perspective.” It wasn’t the last time that ACRS safety concerns were challenged by applicants and vendors.

Earlier this month, NRC Chairman Stephen Burns (right) visited Penn State and toured the reactor. He's standing here with Kenan Unlu, Ph.D., Professor of Nuclear Engineering.

Earlier this month, NRC Chairman Stephen Burns (right) visited Penn State and toured the reactor. He’s standing here with Kenan Unlu, Ph.D., Professor of Nuclear Engineering.

The ACRS fretted over the potential for theft of the fuel, power excursions, and the proximity of the reactor to college housing. The reactor’s 3.6 kilograms of highly enriched fuel posed a safeguards risk, and the Committee demanded a combination of security guards and radiation monitors to protect it. Penn State had to carry out fuel test program and moved the reactor further away than planned from faculty housing. The ACRS also required an emergency plan for notifying local authorities, public evacuation, and cleanup.  Ironing out these issues delayed licensing. When President Dwight Eisenhower gave the college’s commencement address in June 1955, he could only look down into an empty tank with no fuel.

But persistence led to success. On the morning of August 15, Breazeale and doctoral student Robert Cochran started the reactor for the first time. Both veteran Oak-Ridge operators, their approach to criticality was careful but confident enough that they paused so that Cochran could run to the registrar’s office. At 11:30 a.m., the reactor went critical. Then Breazeale and Cochran shut down the reactor and stored the fuel in a vault for two weeks. It was, after all, summer vacation.

The Breazeale reactor reminds us how much reactor safety has changed while staying the same. Its 1955 license was just two pages of conditions. When Penn State renewed it in 2009, the license had grown to 60 pages. Safety regulation is more complex today, but the inherent safety of Breazeale’s reactor remains as important today as it was in 1955.

Part II: Ensuring Safety in the First Temple of the Atom

Thomas Wellock
NRC Historian

https://www.lib.ncsu.edu/specialcollections/digital/text/engineAs noted in Part I of this story on the NC State research reactor, the Atomic Energy Commission (AEC) was very anxious to promote the world’s first civilian reactor. But its enthusiasm was tempered by the challenge of placing a reactor safely on a busy college campus and developing an approval process for non-AEC reactors.

The AEC turned to its Reactor Safeguard Committee, the forerunner of today’s Advisory Committee on Reactor Safeguards. The Committee was formed in 1947 to evaluate the safety of new reactors proposed by AEC laboratories and contractors.  “The committee was about as popular—and also necessary—as a traffic cop,” recalled Safeguard Committee Chairman Edward Teller.

The Committee’s most significant contribution was establishing a conservative approach to safety given the engineering uncertainty of that era. “We could not follow the usual method of trial and error,” Teller said. “The trials had to be on paper because the actual errors could be catastrophic.” The Committee developed a “simple procedure” of challenging a reactor designer to write a “hazard summary report” that imagined the worst “plausible mishap”—soon known as a “maximum credible accident”—and demonstrate the reactor design could prevent or mitigate it.

Five NC Stte physics professors designed the reactor. Here, in the reactor control room (left to right front row) are Clifford K. Beck and Arthur C. Menius, Jr. Standing is Newton Underwood, three unidentified students, Arthur Waltner and Raymond L. Murray.

Five NC State physics professors designed the reactor. Here, in the reactor control room, (left to right front row) are Clifford K. Beck and Arthur C. Menius, Jr. Standing is Newton Underwood, three unidentified students, Arthur Waltner and Raymond L. Murray.

The Committee focused on several hazards, including a surge in the chain reaction called a reactor “runaway,” a catastrophic release of radioactive material from fire, sabotage, or an earthquake, and hazards from routine operation that might result from leaks or inadvertent exposures. The Committee asked NC State to address these concerns in a “hazards summary report.”

To meet the Committee’s desire for inherent safety, NC State proposed a “water boiler” reactor, which was believed to have “student-proof” safety margin given its strongly “negative coefficient” of reactivity that limited greatly the possibility of a runaway. NC State also developed interlocks and an extremely dense concrete shielding to discouraged sabotage.

In order for NC State to commit the funds to such a long-term project, it needed an early approval. This created a dilemma since the college did not yet have a detailed, complete design.  The AEC used a two-step conditional approval that was similar to its later construction permit/operating license process. In step one, construction did not begin until NC State addressed the most important design safety issues. When it did, the AEC agreed by contract to supply enriched fuel. The fuel was not delivered, however, until NC State resolved all outstanding safety questions and a final inspection took place. With that, the first civilian reactor in history went critical in September 1953.

The AEC approach to safety at NC State foreshadowed many later regulatory practices. As important as the 1954 Atomic Energy Act is to current regulatory practice, it is interesting to see that many of the critical elements have even deeper roots back toward the beginning of the atomic era.


Part I — The First Temple of the Atom: The AEC and the North Carolina State Research Reactor

Thomas Wellock
NRC Historian


In January 1955, Newsweek reported, “It is the envy of thousands of scientists and hundreds of college presidents. It has made Raleigh, North Carolina’s capital, an atomic mecca, attracting such disparate types as President Celal Beyar of Turkey, a band of junketing North Carolina peanut growers, some German school teachers, as well as a procession of industrialists from all over the world.”

https://www.lib.ncsu.edu/specialcollections/digital/text/engineAll had come to see the world’s first research reactor open for public view at North Carolina State College (NC State).

Proposed by NC State in 1950, the reactor was an audacious idea when the most basic information about the fission process was a Cold-War secret. Industry and universities were unwilling to pursue civilian applications of nuclear energy that required expensive security clearances.

Where others saw obstacles, Clifford Beck spied an opportunity. A physicist at NC State, Beck proposed to the Atomic Energy Commission the nation’s first nuclear engineering program built around a declassified reactor.

His timing was perfect. The announcement in September 1949 that the Soviet Union had exploded an atomic bomb tipped the debate within the AEC toward those who favored declassifying atomic secrets. Former AEC Chairman David Lilienthal called on the AEC to “free the atom” for U.S. industrial use.

AEC officials were elated with Beck’s proposal since it provided them with a concrete reason to declassify reactor information. They assured him they were “practically unanimous” that it would be approved. In late 1950, the AEC made public for the first time information on fission research and small research reactors, including the NC State reactor.

Taking advantage of its status as the world’s only public reactor, NC State included a viewing auditorium with thick water-shielded windows so the public could see nuclear energy was, as Beck claimed, “just another type of tool, not something mysterious and super-secret.” In the first year of operation, the reactor had more than 6,000 visitors who came to see a reactor that was “guarded by nothing more than a physics student with a guest book.” One intrigued journalist dubbed it “The First Temple of the Atom.”

NC State Observation Room

NC State Observation Room

Ending secrecy cleared only the first hurdle for NC State. The AEC had to confront difficult safety and security questions.

In 1950, the 1946 Atomic Energy Act strictly limited uses of fissionable material. How could the agency provide bomb-grade fuel to a civilian reactor? How could it prevent sabotage of an unguarded reactor? How could the AEC ensure safe operation on a densely populated college campus? And who in the AEC should approve the reactor?  In answering these questions, the agency foreshadowed many of the later practices it followed in licensing nuclear power reactors. We will turn to that story on Wednesday.

Throwback Thursday: The Signing of the Atomic Energy Act of 1946

President Truman signs the Atomic Energy Act of 1946.President Harry Truman signed the Atomic Energy Act 68 years ago this month – Aug. 1, to be exact. The act set up the Atomic Energy Commission, a civilian agency charged with managing the nuclear technology developed during WWII. Later, the AEC was divided into two agencies – the NRC and the Department of Energy. The NRC was tasked with regulating civilian nuclear technologies. Pictured behind President Truman (left to right) are seven men: Tom Connally, Eugene Millikin, Edwin Johnson, Thomas Hart, Brien McMahon, Warren Austin and Richard Russell. What did the men all have in common? Photo courtesy of the Department of Energy.


Get every new post delivered to your Inbox.

Join 1,735 other followers

%d bloggers like this: