U.S. NRC Blog

Transparent, Participate, and Collaborate

Tag Archives: department of energy

REFRESH — Who Sets National Nuclear Energy Policy?


refresh leafWho decides if the U.S. is going to use nuclear energy to meet this country’s electric needs? It’s a question we get here at the NRC not infrequently. The short answer: Congress and the President. Together they make the nation’s laws and policies directing civilian nuclear activity – for both nuclear energy and nuclear materials used in science, academia, and industry.

Federal laws, like the Atomic Energy Act, set out our national nuclear policy. For example, in the Atomic Energy Act, Congress provided that the nation will “encourage widespread participation in the development and utilization of atomic energy for peaceful purposes.” Other federal laws, like the Energy Policy Act of 2005, call for the federal government to provide support of, research into, and development of nuclear technologies and nuclear energy. The President, as the head of the executive branch, is responsible for implementing these policies.

But sometimes, things get confusing as to who does what when it comes to putting these laws into practice! Although the NRC is a federal government agency with the word “nuclear” in its name, the NRC plays no role in making national nuclear policy. Instead, the NRC’s sole mission is to regulate civilian use of nuclear materials, ensuring that the public health, safety, and the environment are adequately protected.

The NRC’s absence from nuclear policymaking is no oversight, but a deliberate choice. Before there was an NRC, the U.S. Atomic Energy Commission (AEC) was responsible for both developing and regulating nuclear activities. In 1974, Congress disbanded the AEC, and assigned all of the AEC’s responsibilities for developing and supporting nuclear activities to what is now the U.S. Department of Energy (DOE). At the same time, Congress created the NRC as an independent regulatory agency, isolating it from executive branch direction and giving it just one task – regulating the safety of civilian nuclear activities.

Today, the DOE, under the direction of the President, supports federal research and development of nuclear technologies and nuclear energy in accordance with federal laws and policy goals. At the DOE, the Office of Nuclear Energy takes the lead on these programs.

Since its creation  four decades ago, the NRC’s only mission has been to regulate the safe civilian use of nuclear material. For that reason, the most important word here in the NRC’s name is not “Nuclear,” but “Regulatory.” Because the NRC has no stake in nuclear policymaking, the NRC can focus on its task of protecting public health and safety from radioactive hazards through regulation and enforcement.

REFRESH is an occasional series where we revisit previous posts. This originally ran in August 2012.


A Monday Quiz — A Blue Glow

The Advanced Test Reactor at Idaho National Laboratory uses plate type fuel in a clover leaf arrangement. The blue glow around the core is known as Cherenkov radiation. Courtesy of Idaho National Laboratory.

This Advanced Test Reactor runs tests that determine how fuels and materials react when bombarded by streams of neutrons and gamma rays under a variety of pressure and temperature conditions. Information that would normally require years to gather from normal reactor operations can be obtained in a matter of weeks or months. The primary “customer” of the reactor is the Naval Nuclear Propulsion Program.

The NRC licenses 31 research and test reactors in 21 states (as of 2014); eight research reactors are being decommissioned. We also license the operators and conduct some 50 inspections each year. DOE, however, regulates this particular test reactor.


Where is this test reactor located?
What scientist (and Nobel Prize winner) gave his name to the blue glow seen in this photo?


Throwback Thursday – A Reactor Vessel’s Arrival

tbtchIn these photos, a reactor vessel is being towed (and then arrives) at the barge dock of an East Coast nuclear power plant site circa 1971 Can you name the power plant? Photo courtesy of the Department of Energytbtch1

Hitting the Road – How the NRC Makes Sure Radioactive Material Is Shipped Safely

Bernard White
Senior Project Manager

LWT in Air 2

The NAC LWT transport package Photo courtesy of NAC International

In September 2013, we talked about transportation of spent nuclear fuel and how we know it is safe. This month, we want to discuss the safety basis for transporting other types of radioactive material.

The NRC recently approved a package to transport high enriched uranyl nitrate. This material is left over from the production of medical isotopes used in millions of diagnostic procedures every year. This package is to be used to bring material currently stored in Canada, where the isotopes were made, to the Savannah River site in South Carolina. The shipments are part of a DOE program to take back high enriched uranium from countries to which the U.S. supplied it.

Our review did not address whether the shipment should be made. Nor is it specific to any route. It just looked at whether the proposed shipping package design meets our requirements for safe transport. We rigorously reviewed the information submitted by the cask designer, NAC International. We asked four sets of detailed questions and thoroughly reviewed the applicant’s responses. After two years of review and two face-to-face meetings, we have answers to all our questions and we’re satisfied that the package design meets all NRC requirements for safe transport.

The high enriched uranyl nitrate, which is a liquid, will be transported using special containers that were designed to prevent leakage. To ensure they do not leak, the containers are leak tested after fabrication and prior to transport, each time the container is filled. These containers must also be replaced once they have been in use for 15 months. Together, these requirements give the NRC confidence that the containers will not leak.

These leak-tight containers will be placed into specially-designed packages for transport. This package design has been used for 25 years to safely transport a wide variety of radioactive materials. The inner containers and the outer packaging together make up the transport package.

Our review of this transport package design gives us confidence that, even if there were to be a transport accident, radioactive material will not leak from the package; dose rates will not be high enough to cause harm to anyone; and a nuclear chain reaction will not occur. Packages are evaluated for conditions that mirror normal transportation as well as the forces the package may experience in a severe accident.

The conditions assessed for routine transport include rain, hot and cold temperatures, a drop that may occur during handling, and the vibration that we all feel in a car or riding on a train.

For accident conditions, the package must be shown to be able to withstand forces that are more severe than in a real-world accident. This is done by testing or evaluating the package in a sequence of stringent tests. We discussed these tests in detail in our September 2013 blog.

This package has been shown to be able to safely transport contents that are much heavier and more radioactive than the high enriched uranyl nitrate, including spent nuclear fuel. The dose rates from the package containing liquid uranyl nitrate will be much lower than when the package is loaded with spent fuel.

For all these reasons, the NRC Is confident the package design meets all our requirements for safe transport. We follow the same review process for every transport package design we receive. In every case, we make sure we thoroughly understand the design and all the analyses in the application. We ask questions, if necessary, and often perform our own analysis. In some cases, including this one, we impose special conditions to give added assurance of safety. Only when we are satisfied a design meets every NRC requirement will we issue an approval.

Throwback Thursday – Let There Be Light

lightbulbMore than 60 years ago this Saturday, a string of bulbs lit up courtesy of Argonne National Laboratory. What was the big deal? The electricity used to power the bulbs was generated by an experimental breeder reactor and was the first electricity produced using the heat of nuclear fission.

Photo from the Department of Energy



Get every new post delivered to your Inbox.

Join 1,752 other followers

%d bloggers like this: