U.S. NRC Blog

Transparent, Participate, and Collaborate

Category Archives: New Reactors

Taking a Long-Term View on New Reactor Licenses

Scott Burnell
Public Affairs Officer

Since 2012, the NRC has licensed 11 new reactors in the United States. The first four of those are under construction, two in Georgia and two in South Carolina.

The other seven? Their licenses are ready to go whenever the companies involved choose to start building them, and here’s why.

These new reactors are authorized through the NRC’s Combined License process. Under this approach the license includes permission to both build a reactor and operate it later, as long as a detailed list of completion requirements are met.

A Combined License includes the same 40-year operating period as the licenses for today’s reactors. Those 40 years start when the NRC concludes the reactor has been built according to its license and can operate safely. The construction portion, on the other hand, is set up without a definitive expiration date.

We base our permission to build the reactor on our review of technical and environmental information the applicant provided. Issuing a license means we found all that information acceptable.

Let’s imagine Company X receives a Combined License and waits 10 years before deciding to start construction. If the original information is still valid, the project could get underway. Most categories of information won’t change in that time. The license includes provisions where the company must account for new information when it decides to start construction.

All of this means that companies with a Combined License can therefore take additional time to consider those issues affecting the business decision to construct or not that fall outside the NRC’s jurisdiction. For example, a state’s utility agencies can create or revise policies on how the state obtains and pays for electricity. Changes in interest rates, prices for other electricity sources and even the makeup of regional electricity markets can affect the company’s overall business case.

Once a company concludes conditions are right for using a Combined License, the utility will give the NRC advance notice of its intent to start construction. The NRC will inspect construction activities and otherwise ensure the company meets relevant requirements for protecting the public.

On the Road to Small Reactor Design Reviews

Scott Burnell
Public Affairs Officer

As the NRC starts looking over NuScale’s application to certify the company’s first-of-its-kind “small modular reactor” design, it’s worth looking back at how we got here. It’s also useful to look at the steps we’ll follow going forward in our technical review.

nuscaleNuScale’s application is the first to propose a nuclear power plant designed with several small reactors instead of one large one. The company has discussed this approach with us since 2008, using much the same “pre-application” process followed by makers of traditional large reactors. These talks helped both the NRC and NuScale understand where the design might need additional supporting information or alternative approaches to NRC policies. For instance, NuScale examined how its design could best meet the NRC’s requirements for staff in the control room.

The NRC also used information from NuScale in developing a design-specific review standard. This ensures the agency’s technical staff has specific guidance on the requirements NuScale must meet to get the novel small modular design approved. The standard covers topics such as instrumentation and controls, cooling the reactor core in an emergency, and the materials used for the reactor vessel and steam generator. The NRC published the draft review standard in July 2015 and after public comment, issued the final review standard in August 2016.

The application itself is a collection of electronic files that must be transferred into the NRC’s document database, ADAMS. This process ensures the agency staff can refer to a constant set of information during the review. It also allows the public to view any documents not subject to withholding for security or other reasons. The agency expects all the NuScale application documents will be transferred by mid-January.

Michael Johnson, NRC Deputy Executive Director for Operations (right), and Vonna Ordaz, Acting Director of the Office of New Reactors (second from right) receive NuScale's application from NuScale Chief Nuclear Officer Dale Atkinson (second from left) and NuScale Vice President for Regulatory Affairs Tom Bergman (left).

Michael Johnson, NRC Deputy Executive Director for Operations (right), and Vonna Ordaz, Acting Director of the Office of New Reactors, (second from right) receive NuScale’s application from NuScale Chief Nuclear Officer Dale Atkinson (second from left) and NuScale Vice President for Regulatory Affairs Tom Bergman (left).

Once the NRC has all the pieces of the NuScale application, the staff will first check if it contains enough high-quality information for us to do detailed technical reviews. If it doesn’t, NuScale can provide supplemental information. If it does and we find the application acceptable for a full review, we will publish a notice in the Federal Register. We expect to make our acceptance decision by mid-March.

Once we complete our full review and get feedback from the Advisory Committee on Reactor Safeguards, the technical staff will decide whether NuScale’s design is safe and appropriate for U.S. use. If the answer is yes, the staff will offer the Commission a draft rule to add NuScale to the list of approved designs. The public can comment on draft rules to certify new designs.

We expect the design certification review to last about three years, assuming NuScale completely answers any NRC questions in a timely manner. This exacting review ensures the staff can make a fully informed decision that protects public health and safety.

A certified design is considered safe and appropriate for U.S. use; the NRC has certified six reactor designs to this point. Companies interested in using certified designs must apply for separate licenses before reactors can be built and operated.

Preparing for Advanced Reactors

Deborah Jackson
Deputy Director
Division of Engineering Infrastructure and Advanced Reactors

Before a company gets down to the nuts and bolts of a reactor design, it has to consider the big picture of protecting the public. The NRC lays out this mandate through a combination of regulatory requirements and guidance. “General Design Criteria,” or GDC are a key part of the regulatory requirements. We’re at the point where public input will help us develop Advanced Reactor Design Criteria (ARDC) for tomorrow’s reactors.

The current criteria cover concepts such as protecting against severe natural events and putting multiple barriers between radioactive material and the environment. Designers and operators use that basis for designing, fabricating, building, testing, and operating a reactor’s safety-related equipment. Companies are now considering designs that depart from cooling reactors with water, so the NRC is moving towards properly adapting the GDC.

We’ve been working with the Department of Energy on this since 2013. Our initiative has examined where today’s GDC could apply to advanced designs, and where new or revised criteria make sense. A DOE report from late 2014 (parts one and two) laid out Advanced Reactor Design Criteria, which could fill the GDC role for non-light-water-cooled reactors.

The DOE set out both criteria independent of any specific technology, and specific criteria for reactors cooled by liquid sodium or an inert gas. These ARDC will not be binding requirements.

The NRC picked up the ball by considering existing information on advanced designs, and we’ve asked DOE additional questions while developing draft regulatory guidance on the ARDC. This is the first step in strategically preparing for the review of non-light-water reactor applications.

The preliminary draft of the ARDC will provide stakeholder insight into the NRC staff’s current views on how the GDC could be interpreted to address non-light-water reactor design features. Ultimately, a risk-informed, performance based advanced non-light water reactor regulatory framework is envisioned.

A specific question we’re looking at involves whether NRCs generic criteria are broad enough to cover the spectrum of designs being considered. We’re also asking whether the proposed criteria appropriately address some new concepts described in DOE’s documents.

Public comments, which can also be sent to AdvancedRxDCComments.Resource@nrc.gov, will be accepted through June 8. After we address these initial public comments, a draft regulatory guide will be developed and published in the Federal Register for public comment.

The NRC Prepares for Advanced Reactor Designers to Come Knocking

Jennifer Uhle
Director, Office of New Reactors

Today’s conversations about powering civilization in the future often propose carbon-free energy sources. In addition to solar and wind, these conversations sometimes touch on advanced nuclear reactor designs. Designers have yet to submit any of these designs for NRC review, but we expect applications in the future and we’re preparing for them.

These technology approaches range from evolutions on proven technology (such as high-temperature gas reactors) to innovative concepts that would re-use the “waste” nuclear fuel from today’s reactors.

Jennifer Uhle, second from left, participates in the panel.

Jennifer Uhle, second from left, participates in the panel.

I recently took part in one of these discussions at the Third Way group’s first Advanced Nuclear Summit and Showcase at the Newseum in Washington, D.C. The NRC contributed to the summit due to its focus – what can agencies and legislators in Washington do to support development of advanced nuclear designs? The NRC’s only role is ensuring these designs meet stringent safety standards.

My portion of the discussion involved the NRC’s review of reactor designs to meet our mission of protecting public health and safety. As I told the audience, we carry out that work as efficiently as possible so that the NRC avoids becoming a roadblock to deployment of appropriate technologies.

The NRC’s looking ahead to potential applications for reactors cooled by something besides water. Our limited advanced reactor budget includes work to stay up to date on this “non-light water reactor (LWR)” technology development. Vendors are considering many non-LWR technologies for future licensing work. We’re taking a technology-neutral approach to stay properly positioned to efficiently review whatever vendors submit.

The summit also attracted non-LWR designers, venture capitalists, the Department of Energy, national laboratories, industry groups, universities, media, and think tanks, such as the Clean Air Task Force. Members of Congress attended the summit to discuss proposed legislation related to nuclear power.

Advanced reactor designers told the audience they’re targeting deployment in the 2020s to the 2030s, depending on where their designs are in development. The NRC’s preparation for potential advanced reactor applications includes our ongoing partnership with the Department of Energy. DOE’s support for research and design activities will help vendors gather the information they need for their design applications.

The next milestone in that partnership will be our second advanced non-light water reactor workshop, currently scheduled for June. This workshop will present DOE’s strategies to support the development, and NRC’s plans for efficient licensing of advanced reactors.

Crossing the Finish Line at Watts Bar

Joey Ledford
Public Affairs Officer
Region II

Watts Bar Unit 2, the nation’s first new commercial nuclear unit in a generation, received its NRC operating license last October and is closing in on its first nuclear chain reaction. (Power production is still a ways off.) The NRC is still on the job as the staff transitions to operational inspection duties.

An NRC inspector looks on as TVA workers install components at Watts Bar Unit 2.

An NRC inspector looks on as TVA workers install components at Watts Bar Unit 2.

The agency’s Region II-based construction inspection staff, supplemented by headquarters staff, have booked more than 127,000 hours making sure the new unit has been built according to its design specifications. More than 350 agency inspectors and other staff have been involved in the inspection and project management effort, which geared up in earnest in 2008 when the Tennessee Valley Authority committed to completing the unit it had initially started building in 1973 and later suspended.

The Watts Bar plant, located about 50 miles northeast of Chattanooga, Tenn., has a unique history. Unit 1, which also traces its roots to 1973, was the last U.S. plant to come on line when it was finally licensed in 1996 after a similarly lengthy construction hiatus.

When work resumed on Unit 2, the NRC recalled a handful of staffers who had been involved in inspecting work on the sister unit to ensure “knowledge transfer.”

“Our goal is to verify the design is accurate,” said James Baptist, who was a team leader for several years during Watts Bar 2 construction and has recently become chief of the Region II branch overseeing the transition from construction to operation. “We want to ensure Unit 2 looks and operates just like Unit 1. It greatly assists the effort when you have a working model right beside you.”

As is the case with most NRC inspection efforts, the corps of construction resident inspectors led the way, reporting to the site daily and amassing a big percentage of those 127,000 hours.

“Everything came through the residents in terms of what was going on at the site,” said Chris Even, who recently transitioned from senior construction project manager to senior project inspector in the new branch overseeing the transition. “We always relied on the residents for knowing exactly what was going on.”

The workload was huge from the beginning, with more than 550 construction inspection items to be inspected and closed. And Baptist noted that even though the plant was designed in the 1970s, it’s built to today’s standards.

“They purposely built Unit 2 to be a mirror image of Unit 1 while including all the updated safety enhancements that have accrued over the last 25 or 30 years,” he said.

For example, Watts Bar is the first plant in the nation to comply with all the NRC’s post- Fukushima upgrades as well as the newest cybersecurity requirements.

One might think that with the license issued and the plant about to start up that the NRC inspection effort would be winding down. Baptist said that is not the case.

“We still have our foot on the gas,” he said.

Just as the NRC inspectors were dedicated to make sure Watts Bar Unit 2 was constructed and tested according to the design and NRC regulatory requirements, they will continue to maintain that vigilance as the plant begins and continues to operate.



%d bloggers like this: