Radium Part III: The NRC’s Role

Richard Chang
Office of Nuclear Material Safety and Safeguards

Radium_Periodic Element Table

We’ve been writing in this series about radium—how it was discovered, how it was used, how it can impact human health. Today we want to explain where the NRC fits in.

As we said in our last post, the states originally oversaw radium use. In 2005, Congress gave the NRC authority over radium through the Energy Policy Act. In 2007, we put in place our regulations on the control, use, and disposal of radium. These rules made clear that the NRC oversees radium only after it has been purposely concentrated for use.

Because many states already had laws on radium, we took over regulatory oversight in phases. We had full oversight for radium in all states by August 2009 (either through states that regulate nuclear materials under agreements with the NRC, known as Agreement States, or directly in those states that remain under NRC jurisdiction).

In 2007 after our regulations were put in place, we began talking to the U.S. Navy about radium contamination at their sites. As we learned more about this program and talked with the other branches of the military, we began working to clarify our role in the remediation at military sites. During the same time, we became aware of two specific radium cleanup efforts by other federal agencies. The Environmental Protection Agency has done cleanup work at the former WaterburyClockWaterbury Clock Company, in Waterbury, Conn. The National Park Service is also involved in a cleanup project at Great Kills Park, in Staten Island, N.Y.

As we learned more about these projects, it became apparent that a critical step for us to take would be identifying historical commercial radium sites; many of which were many decades old. As such, we began to look for sites in our jurisdiction that may have radium, and to find out how much, if any, cleanup was done. There are no known health and safety issues at any of these sites, but we want to make sure they do not pose a risk.

We contracted with Oak Ridge National Laboratory to help us develop a full picture of commercial radium sites. The lab started by cataloging the different products developed and sold to the public in the early 20th century. Oak Ridge scoured existing publicly available literature, records and databases, identified sites where radium may have been used to make consumer goods and looked for any cleanup records. We received the final results in November 2015.

We are working to get more information about the sites under NRC jurisdiction. We will be reaching out to site owners. Our goal is to confirm that these sites do not pose a risk to public health and safety and the environment. We’ll keep you posted on our progress.

GAO and the Fake Licensees

Duncan White
Senior Health Physicist

The Government Accountability Office (GAO) published a report today on a “covert operation” they conducted to test the NRC and some states on the process of issuing licenses for possession and use of radioactive materials.

First some facts: GAO established a fake company and made three attempts to obtain a license. GAO was successful in only one case. As part of their operation, GAO then altered the license and placed orders for radioactive material with two companies that could have resulted in GAO receiving double the quantity of material authorized in the license. That quantity of material would have posed a higher potential risk than what was actually authorized in the unaltered license, and would have required additional security measures.

In the language of radioactive materials categories (see box), the fake GAO company had a valid license for a Category 3 quantity, but used a modified copy of that license to order a Category 2 quantity.

It is important to note that the public’s safety was never at risk because GAO never actually obtained radioactive material.

The license GAO obtained was granted by one of our Agreement States (the 37 states that regulate radioactive materials under agreements with us). After we learned of the GAO actions, we immediately made sure that the Agreement State knew the license was obtained under false pretenses and revoked it, and notified manufacturers and distributors of the revocation. We also made sure that the 36 other Agreement States knew about the issue.

Our next step was to figure out what went wrong. Working with the Agreement State that issued the license, we found that the licensing staff did not complete all the required steps of the pre-licensing procedures. In GAO’s other two attempts, the licensing officials who correctly denied GAO’s fake company a license – in another Agreement State and in an NRC regional office – did follow all the steps of those procedures.

Knowing the root cause helped us to focus our corrective actions. The NRC and all the Agreement States responded with steps to improve training and underscore the importance of following procedures. All licensing and inspection staff at the NRC and in the Agreement States completed this re-training in December 2015.

NRC and Agreement State officials also formed joint working groups to see what additional lessons can be gathered from the GAO operation. These groups have been meeting since January 2016. Among their tasks, the groups are reviewing the pre-licensing guidance and evaluating new strategies to improve license verification and transfer procedures for the quantity and type of material involved in the GAO sting.

The groups will also consider GAO’s specific recommendations. Once this work is completed, the NRC staff will present to our management and Commissioners any policy questions that emerge from the reviews, including whether we think changes are needed to the current security and tracking requirements for radioactive materials.

The NRC takes radioactive materials security very seriously. We participate with 13 other federal agencies on a U.S. Government task force that has evaluated the security of radiation sources in the U.S. over the past 10 years. This group has identified no significant gaps in source security and recommended no legislative changes.

GAO reccomend__HorizontalBased on this comprehensive, ongoing review, we believe current NRC regulations for licensing radioactive sources remain adequate for protection of safety and security, consistent with the risks they pose. Nonetheless, the NRC is doing what it can to see what lessons from the GAO operation can be applied to strengthen radioactive materials security.

IMPEP — Evaluating the NRC’s Radioactive Materials Program

David Spackman
Health Physicist

For the NRC and each of the 37 states that regulate radioactive materials under agreements with us, a time comes every few years when we start talking about “IMPEP.” The acronym is spoken about as frequently as the top 10 new words added to Webster’s Dictionary every year – that is to say a lot.

IMPEP may be very easy to say, but understanding its true value requires a closer look.

IMPEP stands for the Integrated Materials Performance Evaluation Program. Think of it like an audit. It is the NRC’s primary tool for assessing how well radioactive materials programs are agreementstatenesperforming. Every Agreement State and NRC program is evaluated under IMPEP every four to five years. A rotating team of experts from the Agreement States and the NRC do the reviews. The teams focus on specific areas of a radioactive materials program that have the potential to affect public health and safety. The reviews are very detailed, typically lasting a full week.

Once an IMPEP review team has looked at everything they need to see on-site, they document their findings. They write a report and recommend a “grade” on the program’s performance to the Management Review Board, which is comprised of senior NRC managers and a state program manager who keeps in touch with the other Agreement States. The board holds a public meeting to talk about what the team saw and assigns the overall program rating: “Satisfactory,” “Satisfactory but Needs Improvement,” or “Unsatisfactory.”

Recently it was the NRC’s turn to undergo an IMPEP review. From Dec. 8-11, a team of experts from Ohio, Tennessee, and the NRC reviewed the NRC’s Sealed Source and Device (SS&D) Evaluation Program. This program performs engineering and radiation safety evaluations of sealed radioactive sources and the devices that use them.

Sealed sources are just what the name says—radioactive sources sealed in a capsule to prevent leakage or escape of the material. The devices are used for many things, but generally they measure something, such as soil density, fluid levels, the thickness of a pipe, and whether metal and welds are sound. They can also help to map geologic formations from inside a gas or oil well. The NRC needs to do adequate technical evaluations of SS&D designs to ensure they’ll maintain their integrity and their designs are adequate to protect public health and safety.

During the four-day IMPEP review at NRC Headquarters, the team looked at the NRC program’s technical quality, staffing and training, and any defects or incidents involving SS&Ds. Most of the work was done through in-depth staff interviews and targeted document reviews. S

Since finishing the evaluation in mid-December, the team has drafted their report. They expect to recommend to the board that the NRC’s SS&D program be rated Satisfactory – the highest possible rating. Furthermore the review team commended NRC staff for performing very competent technical SS&D reviews. Although this is an excellent result so far, there is still one more important step to complete the IMPEP review process – the public meeting.

This meeting allows the review team to present its findings and formally recommend the overall program rating. While the structure of these meetings is simple, it is very common to see a spirited discussion of the strengths, weaknesses, innovations and shortcomings of the program under review.

This is where the true value of IMPEP is laid bare. If all goes right, the end result is improving a program’s ability to protect public health and safety and the environment – even if the program gets the highest rating.

The MRB’s public meeting to discuss NRC’s SS&D program will be held at NRC Headquarters in Rockville, Md., on March 5, 2015. The meeting details are available on the NRC website at http://meetings.nrc.gov/pmns/mtg. We encourage members of the public to come or listen in by phone.

NRC’s Materials and Waste Management Programs Coming Back Under One Roof

Chris Miller
Merge Coordinator and Director of Intergovernmental Liaison and Rulemaking

 

When Congress created the NRC in 1974, it established three specific offices within the agency. One of them was the Office of Nuclear Material Safety and Safeguards, or “NMSS” in NRC shorthand. This office was charged with regulating nuclear materials and the facilities associated with processing, transporting and handling them.

fuelcyclediagramThis charge was, and is, broad. The NRC’s materials and waste management programs cover facilities that use radioisotopes to diagnose and treat illnesses; devices such as radiography cameras and nuclear gauges; and decommissioning and environmental remediation. It also includes nuclear waste disposal and all phases of the nuclear fuel cycle, from uranium recovery to enrichment to fuel manufacture to spent fuel storage and transportation.

And there’s more. The program also does environmental reviews and oversees 37 Agreement States, which have assumed regulatory authority over nuclear materials, and maintains relationships with states, local governments, federal agencies and Native American Tribal organizations.

As with all organizations, the NRC’s workload has ebbed and flowed in response to a multitude of factors. Over the years, NMSS went through several structural changes to address its workload changes. In 2006, NMSS was gearing up for an increase in licensing activity related to the processing, storage and disposal of spent nuclear fuel. At the same time, the Agreement State program was growing, requiring additional coordination with the states—a function then housed in a separate Office of State and Tribal Programs.

To meet these changes and ensure effectiveness, the NRC restructured NMSS. Some of its programs were moved, including the state and tribal programs, into the new Office of Federal and State Materials and Environmental Management Programs (FSME). NMSS retained fuel cycle facilities, high-level waste disposal, spent fuel storage, and radioactive material transportation. FSME was responsible for regulating industrial, commercial, and medical uses of radioactive materials and uranium recovery activities. It also handled the decommissioning of previously operating nuclear facilities and power plants.

The NRC’s materials and waste management workload has now shifted again. At the same time, the agency is exploring ways to reduce overhead costs and improve the ratio of staff to management.

So, NRC staff launched a working group last fall to review the organizational structure of the NRC’s materials and waste management programs. With the focus shifting to long-term waste storage and disposal strategies, and an increasing number of nuclear plants moving to decommissioning, the group recommended merging FSME’s programs back into NMSS.

NRC’s Commissioners approved that proposal last week, and the merger of the two offices will be effective October 5. We think this new structure will better enable us to meet future challenges. It will improve internal coordination, balance our workload and provide greater flexibility to respond to a dynamic environment.

Current work, functions and responsibilities at the staff level will be largely unchanged. The management structure will realign into fewer divisions, with fewer managers.

In their direction to the staff, the Commissioners asked for careful monitoring of the changes and a full review after one year. We fully expect these changes to improve our communications both inside and outside of the agency, and provide for greater efficiency and flexibility going forward.

Tracing How Radioactive Materials Are Used in Research

Betsy Ullrich
Sr. Health Physicist
Region I
 

scientistScientists have been using radioactive materials in research nearly as long as they’ve known there were radioactive materials.

Most radioactive materials are used in research as “tracers.” A radioactive element is attached to a compound in order to see what happens to the compound. In other words, the radioactive material is used to “trace” what happens to the compound. Making the compound with the radiotracer is referred to as “labeling” or “tagging” the compound.

Let’s suppose a scientist is developing a new pesticide for treating crops. In order to understand what happens to that pesticide, the scientist uses tritium to label the compound. The atom of tritium will replace one of the normal hydrogen atoms on that compound. Then the pesticide labeled with the tritium tracer will be applied to a plant in a greenhouse. Samples of the leaves, roots and soil will be collected periodically and tested to see whether there is tritium in the samples.

Then the scientist will know whether the pesticide stays on the leaves, is absorbed into the plant, or gets into the soil from the plant roots or from being washed off the leaves during watering (in a laboratory setting).  

By far, the most frequently used radionuclides for research are carbon‑14 (C14), tritium (H3), iodine‑125 (I125), phosphorus‑32 (P32) and sulfur‑35 (S35), which have low enough energies to be easily shielded with thin plastic. I125 emits low-energy gamma radiation which also is easily shielded by plastic or glass.

Only very small quantities of these radionuclides are used, usually measured in microcuries or nanocuries. Because it’s gotten more expensive to use and dispose of radioactive materials, scientists have developed alternate testing methods for many studies. However, some research still requires radioactive materials because they’re the best way to label and trace a compound.

The use of radioactive materials in research requires a license from the NRC or an Agreement State, and scientists who use radioactive materials are trained in radiation safety and their research methods.