A Bit of NRC Myth Busting — Part II

Eric Stahl
Acting Public Affairs Officer

 Facebook1As we said in yesterday’s Part I, we’ve taken a few of the interesting comments we’ve received on our Facebook page and posed them to our experts for their take on the question, suggestion or assertion. Here are their responses.

One user had several ideas for dealing with spent fuel including “mixing it in glass” and then burying it “in ice in Antarctica” or “blasting the glass off to Venus or Mars.”

 Mixing spent fuel with glass, a process known as “vitrification,” is one method that has been tested to treat nuclear waste in several countries. The idea supposes that mixing radioactive waste with other materials will create a more stable solution that won’t degrade over time.

??????In the U.S., over 50 million gallons of liquid waste from plutonium production at the Hanford site in Washington State will be vitrified and then stored onsite. DOE, who is responsible for oversight at Hanford, expects radioactivity levels in the material to greatly reduce in the future. If the country’s nuclear waste disposal policy was to turn toward vitrification, an application would need to come from the Department of Energy to the NRC. The NRC would be responsible for regulation.

However, burying vitrified spent fuel in Antarctica isn’t an option. Article V of the Antarctic Treaty of 1959, which the U.S. signed, prohibits the disposal of nuclear waste in Antarctica.

PrintSending vitrified spent fuel into space would be a risky and prohibitively expensive idea. According to NASA, it costs approximately $10,000 per pound to send things into orbit. Considering there’s currently more than 70,000 tons of spent fuel in the United States, shooting it into space wouldn’t be cost effective. In addition, a catastrophic accident involving a spacecraft hauling nuclear waste into space could cause radioactive material to contaminate the environment.

In any event, U.S. policy for spent fuel disposal is to place it in a deep geologic repository. Until and unless Congress changes the law, that will remain the policy.

And, finally, there are multiple comments about the wisdom and benefit of new reactor designs, especially one using fissile uranium salt.

The NRC is working to ensure we have the expertise available to review future advanced reactors (such as molten salt or high-temperature gas designs). The NRC will determine if those future designs are acceptable for U.S. use, and we’re working with the Department of Energy to inform advanced reactor designers how the review process will work. The NRC’s role, though, is regulating new designs, not initiating them.

Preparing for Advanced Reactors

Deborah Jackson
Deputy Director
Division of Engineering Infrastructure and Advanced Reactors

Before a company gets down to the nuts and bolts of a reactor design, it has to consider the big picture of protecting the public. The NRC lays out this mandate through a combination of regulatory requirements and guidance. “General Design Criteria,” or GDC are a key part of the regulatory requirements. We’re at the point where public input will help us develop Advanced Reactor Design Criteria (ARDC) for tomorrow’s reactors.

The current criteria cover concepts such as protecting against severe natural events and putting multiple barriers between radioactive material and the environment. Designers and operators use that basis for designing, fabricating, building, testing, and operating a reactor’s safety-related equipment. Companies are now considering designs that depart from cooling reactors with water, so the NRC is moving towards properly adapting the GDC.

We’ve been working with the Department of Energy on this since 2013. Our initiative has examined where today’s GDC could apply to advanced designs, and where new or revised criteria make sense. A DOE report from late 2014 (parts one and two) laid out Advanced Reactor Design Criteria, which could fill the GDC role for non-light-water-cooled reactors.

The DOE set out both criteria independent of any specific technology, and specific criteria for reactors cooled by liquid sodium or an inert gas. These ARDC will not be binding requirements.

The NRC picked up the ball by considering existing information on advanced designs, and we’ve asked DOE additional questions while developing draft regulatory guidance on the ARDC. This is the first step in strategically preparing for the review of non-light-water reactor applications.

The preliminary draft of the ARDC will provide stakeholder insight into the NRC staff’s current views on how the GDC could be interpreted to address non-light-water reactor design features. Ultimately, a risk-informed, performance based advanced non-light water reactor regulatory framework is envisioned.

A specific question we’re looking at involves whether NRCs generic criteria are broad enough to cover the spectrum of designs being considered. We’re also asking whether the proposed criteria appropriately address some new concepts described in DOE’s documents.

Public comments, which can also be sent to AdvancedRxDCComments.Resource@nrc.gov, will be accepted through June 8. After we address these initial public comments, a draft regulatory guide will be developed and published in the Federal Register for public comment.