Counting the Costs on Advanced Reactor Reviews

Anna Bradford, Chief
Advanced Reactors and Policy Branch
Office of New Reactors

We’re continuing to examine topics from the recent two-day public workshop we jointly hosted with the Department of Energy regarding non-light water reactor designs. One topic getting a lot of attention is the possible costs for NRC reviews of applications for these designs.

Last month’s workshop included presentations on the NRC’s experience licensing non-light water designs, as well as discussions of proposed advanced reactor designs.
Last month’s workshop included presentations on the NRC’s experience licensing non-light water designs, as well as discussions of proposed advanced reactor designs.

For instance, some people interpreted a DOE presentation on the Next Generation Nuclear Plant project as saying it costs $800 million to receive a final certification or license from the NRC. The bulk of that $800 million, however, falls outside of NRC fees and would be made up of the designer’s costs to develop and test its design to ensure that it works as planned.

In other words, the designer does not pay the NRC $800 million to review a reactor design. Looking at recent reviews of large light-water reactors, we see designers spent approximately $50 – $75 million for NRC fees to certify their designs.

A recent Government Accountability Office assessment, “Nuclear Reactors: Status and Challenges in Development and Deployment of New Commercial Concepts” says costs can be “…up to $1 billion to $2 billion, to design and certify or license the reactor design.” A different portion of the GAO report, however, pointed out most of these costs aren’t attributable to the NRC review. The largest part of the price tag would be research, development, and design work to develop and test a new reactor design.

We can also examine information from the public workshop on design development costs versus NRC review costs for the developer of a new small modular reactor design. The company said that of approximately $300 million in design investment to date, only $4 million of that amount (or slightly more than 1 percent) is from NRC fees for several years of pre-application interactions with the agency.

Here’s something to keep in mind: NRC review costs depend on the quality and maturity of the applicant’s information. The NRC always aims to efficiently and effectively review designs. Incomplete or inadequate information will very likely increase costs, however, since the NRC will spend more time and effort getting the data necessary to determine whether the reactor could operate safely and securely.

Everyone benefits from a common understanding of NRC costs as we discuss the next generation of reactor designs. The NRC’s website has more information on how the agency is approaching advanced and small modular reactor designs.

Updating Nuclear Materials Transportation Regulations

Michele Sampson
Chief, Spent Fuel Licensing Branch

The idea of transporting nuclear materials can make people nervous. It’s easy to imagine worst-case accidents on the highway or involving a train. But stringent safety requirements, as well as coordination among federal agencies, international regulators, and state and local officials, help to ensure these shipments are made safely. This structure provides many layers of safety.

10cfrtwopartjpgFrom time to time, the requirements are updated to address new information. The International Atomic Energy Agency and U.S. Department of Transportation recently updated their requirements. The NRC just amended ours to reflect those updates, as well as to make some changes we felt were needed based on recent experience. You can read the Federal Register notice on the final rule, published June 12.

While the rules are revised periodically, the fact remains that nuclear materials are transported safely all the time. By far the majority of shipments involve small quantities of nuclear materials. Millions of these shipments are made each year and arrive at their destination without incident. Smaller shipments must be made in compliance with DOT regulations for shipping hazardous materials. The greater the potential risk of the contents, the more stringent DOT’s packaging requirements are. The DOT regulations limit how much radioactivity can be transported in each package. That way, no transport accident involving these small shipments would pose a serious health threat.

But what about larger amounts of radioactive materials? What about spent nuclear fuel?

In addition to having to meet DOT requirements, more radioactive cargo such as spent fuel must meet NRC regulations for nuclear materials packaging and transport in 10 CFR Part 71. These regulations include very detailed requirements for shipping under normal conditions, as well as stringent tests to show the packages can withstand severe accidents. These are the regulations we just finished updating.

If you would like to learn more about the transportation of spent fuel and radioactive materials, see our backgrounder.

%d bloggers like this: