Spent Fuel Casks 101 — What We Regulate and Why

Mark Lombard
Director, Division of Spent Fuel Management

CASK_101finalWe talked back in March about dry casks for storing spent nuclear fuel and how they work. Today we want to introduce you to the different things the NRC looks at each time we review a cask application.

To recap: spent fuel is placed into cooling pools at reactor sites when it can no longer efficiently sustain a nuclear reaction. Dry casks give utilities an alternate way to store their spent fuel, freeing up space in the pools. They were first developed back in the 1980s because space in the pools – designed for temporary storage – was growing short.

Our requirements for dry cask storage can be found in 10 CFR Part 72. All structures, systems and components important to safety must meet quality standards for design, fabrication and testing. And they must be structurally able to withstand wind, rain, snow and ice, temperature extremes, hurricanes and tornadoes, earthquakes, and fires and explosions.

Fuel pellets, rods, and casks_r9Part 72 and related NRC guidance on casks and storage facilities also detail specific engineering requirements. Casks must be designed to keep water out so the fuel can’t have a chain reaction, as it would in a reactor. The casks must also shield workers and the public from radiation. They must safely remove the heat remaining in the spent fuel. And the materials used in dry casks and their physical properties must be well-understood and analyzed.

The NRC has dozens of experts in different scientific and engineering disciplines whose job is to review cask applications (which can be hundreds of pages long) and the detailed technical designs they contain. We will explain in more detail in later blog posts what our experts look for and how they go about approving a cask design.

Moving Forward on Updating Cost vs. Benefit Analysis

Alysia Bone
Rulemaking Project Manager
 

 What are the costs and benefits of the NRCs’ safety regulations? It’s a question we regularly ask as one way to make sure our regulations make sense.

We’re in the process of updating two cost-benefit guidance documents — NUREG/BR 0058 and NUREG/BR 0184 – at the direction of the Commission and after receiving public input. Our update plan is now available online. Our goal is to make sure we are using the right tools to compare costs and benefits so we implement changes that reduce risks and enhance safety in a responsible way.

The updated guidance will do a number of new things. It will include the cost for replacing the energy generated by nuclear power plants. It will also improve the method for putting a dollar amount on health impacts from radiation. We’ll revise terms and definitions for consistency across the agency, and we’ll look at how we use more subjective factors in cost-benefit assessments. We expect these changes will bring our cost-benefit process up to date and help us make more consistent decisions for reactors as well as other licensed activities.

NRC staff experts have been working on this in response to the Commission’s direction for a paper on our approach to considering the economic consequences of a potential nuclear accident. The Commission was responding to the staff’s August 2012 paper and recommendations, which were based on a review of the agency’s economic consequences process in place at the time of the 2011 Fukushima accident. The 2012 staff paper described where considerations of economic consequences fit in the NRC’s review of new reactor licenses, renewal of existing licenses, or major changes to our safety regulations. That earlier paper recommended updating the cost-benefit guidance used to perform these analyses.

In the plan to update cost-benefit guidance, we’ve committed to presenting any identified potential policy issues to the Commission for its consideration. As the staff further develops these potential policy issues, staff will hold public meetings to receive feedback from industry and members of the public, before advising the Commission.